After discussing the horrific fresh water problem facing Cape Town, last post, it got me thinking about countries that already have a history of water scarcities, like Israel, Saudi Arabia, Australia and others. My, wasn’t it Israel that lead the world in developing DESAL? I believe so. Not having remembered any blaring warnings in the major media with any serious health concerns about the industry (other than gripes about cost), I more or less had positive opinions for DESAL. With the ever-growing dilemma of water scarcity, could/would this then be a full solution, for any country, that invested in it as heavily as Israel has? Would this more or less guaranty success?
Over time I had read of Israel’s DESAL success and her successes in the consulting area for this technology. With the technical challenges now mostly all worked out, what about: DESAL for any demand that has all its political/ecological/engineering marbles in a row? Could/will that be their salvation? Yours truly had not given this topic all that much thought until this late Cape Town emergency. Then, I remembered there was one such plant, newly completed in Monterey County, CA, (which the author visits several times a year) and has proven to be a very contentious endeavor, on myriad fronts. Is this what typically transpires with any community/government/private project with these price tags and technical complexities? That question was enough to challenge inertia, and after some full evenings of reading-up on the subject, my usual Pollyanna state of mind flip-flopped. Actually, somber mental currents that I am susceptible to when dwelling upon the danger and downside to nuclear power, I now also find surrounding me on this topic. However, that new assessment represents the opposite to the author’s “can’t-wait-to-get-to-work” enthusiasm I held for DESAL as a young assistant to a ‘mad scientist’ who fervently experimented with different processes. When I say “mad” scientist, I mean it. My benefactor physicist was one of former President Ronald Regan’s ‘brains’ working on REAL Star Wars stuff, like ‘plasma space cannons’ and ‘electric’ deep-space rocket motors. (Herr Doktor eventually blew-up his lab on Revell Campus at UCSD.) (Young Pete the Plumber was playing hooky that day. Whew! ) Is it possible ole Doc re-discovered Cavorite? A mention by Professor Yona Amitai, a Public health expert, speaking at a Bar Ilan University conference is quoted : “…..initial results of Israeli studies point to an elevated mortality risk for myocardial infarction in areas where there is wide use of desalinated water.” Now, that alone is something to mull over when considering the proliferation of DESAL. But unfortunately there are more, balloon-popping reasons why DESAL (as presently applied) cannot serve as a viable (politically/ecologically) model for solving future water needs on a larger scale, without major adaptions. (It is tremendously energy consuming; it produces and releases an environment threatening brine with twice the salt content of normal ocean water plus chemicals used in the process are also accompanying this discharge; enough aquaculture is killed in the process that it negatively affects commercial fisheries.) Another big health question is the Boron that exists in sea water, but not in fresh water, and which is left in the desalinated supply, a dangerous situation? There’s a lot to still learn. Boob-less Tube Because the author has not owned a TV in almost 40 years, he’s enjoyed/enjoys a surfeit of time to indulge his eclectic reading ‘wants’. Because PtP happens to be a merman at heart, and once wondered if he could live more than a long walk (but preferably adjacent to) an ocean beach, and is at home in and on the water as ashore, most things water usually will grab my attention. Two of my major sources, a “regulars”, are the site for The Pacific Institute (headquartered in Oakland, California) and another: CEO Water Mandate. When the snowflakes are a cartwheeling or it’s wind and rain, the author especially thinks it’s time for the recliner and another log on the fire, and to pull the lap robe and spend the hours calmly discovering. Further Soberings Kurtis Alexander S. F. Chronicle January 30th “…….fifty-four percent of California is abnormally dry at present.” “…....seasonal Sierra snow melt accounts for about one-third of California’s water supply.” “………present snow pack is close the all- time record low for this time of year.” Are we so smug that we, of the U.S. completely disavow any possibility of Mother Nature choosing to “school us” like she’s now doing for Cape Town? Interesting times.
0 Comments
The city of Cape Town, South Africa, is about to be the first major city in the world to run out of water. The author read in a BBC article by Gabriella Mulligan that there have been attempts to conserve and the populace has gone through major cut-backs, but it was just recently informed that water service may soon be shut off to everyone but ‘absolutely’ necessary services, like hospitals and security services, etc. According to that source Cape Town (and surrounding environs) have been experiencing a very fierce drought for three years and counting. Officials there are now considering an even more draconian ration of 6.6 gallons per day per person as the reservoirs race to the mandatory cut off point of 13% capacity. At this point the rations could go even to single liters-per-person, per day, if the drought continues. According to a French media: City Taps report, in the African city of Niger, smart water meters are being installed that shut the water off if your cell-enabled account goes ‘negative’. (Pete the Plumber will wager those ‘smart’ water-meters will proliferate worldwide.) Of course those enclaves’s ‘well-to-do’ will have privately contracted water delivery services. (Speak’n of that, the author many years ago worked on a ‘desert mansion’ being built by a very wealthy, ‘water-minded’ gentleman who wanted some level of insurance to disruption of utility service. Nestled in a gap between huge boulders at the edge of the property, curbside, stood a beefy, gravity-operated stanchion (both fill and vent) for a buried, stainless steel 6-in. pipe. This pipe ran 100-plus ft. to a 6000 gallon, stainless steel storage tank, in the ground, beneath the structure. (This extravagant but elegant feature comprised an emergency, separate water system from the utility supplied Main Building Supply system.) Tank-serving pumps, on a separate electrical system and through a separate water distribution system, also served each fixture. Wanna guess this owner’s choice for water delivery service? None other than Sparklett’s Co.) Back In The Real World Many other nations could see Cape Town’s predicament (sooner than expected) with the evermore accelerating climate change events we are experiencing. The BBC’s science editor, Paul Rincon writes that by 2025 UN experts expect 14% of the world to “encounter water scarcity.” This plumber has known from Day One which aspect of modern plumbing is the most integral to our present standard. He thinks that if/when that dire, “in liters” rationing becomes reality, those of us still present will find that dealing with human waste will be modern society’s biggest challenge, ahead of finding sufficient fresh water at ‘survival’ levels. Sewage treatment plants require a lot of water and real progress has been achieved with waste water re-use. But if/when there’s no water to serve toilets, how will we handle this problem? (Photo #1) Of course the probable very first step will be ‘porta-potty’ rentals. (Will that be a business to be in?) But for the vast majority it will not suffice. When you have huge metropolitan areas without sufficient water to provide ‘solid waste’ sanitary conditions, what pressures will come to bear on the populace. Everyone needs to poop. Backyard out-houses will only get one “so far” until cholera and other old nemeses are again a fact of life. Rarely does one think about one’s ‘privilege’ of having a private, utility-supplied sanitary system. (Except, the Homeless are a growing human sector faced with this reality.) According to the World Health Organization, at the last count, 27% of the world’s population (1.9 billion) used private facilities connected to sewers. The WHO: Some 2.3 billion souls still do not have toilets. The BBC: 850 million people lack access to safe drinking water. According to the BBC’s Mulligan, in The ‘Developing’ world, 80% of fresh water supplies impounded, are lost to leakage. For the U.S. this estimate is up to 50%. (And I read in an AWWA (American Water Works Association) bulletin, that American water utilities suffered 6.1 million LSL’s (Leaking Service Lines) in 2017. STRESS KILLS Folks (in general) still get their ‘shorts-in-a-knot’ enough, over the rare power outage. Wait until every person in-the-joint has to deal with disposing of their own human waste, daily, or even oftener. That will be the day the “””” hits the fan. The author has lived off-grid ‘without facilities’ for extended periods. But we all can’t have my beloved, fancy, composting out-houses because first there would simply not be enough room for them, irrespective of health issues due to crowding. The scary part comes when there’ll be no water to even pour down toilets to make them function. Cape Town officials tell its inhabitants that they think they will have enough to ‘stay alive’. But what kind of “staying alive” would that feel (and smell) like? The author has some experience with composting toilets. The most efficient, power required versions are too bulky to install in built space. Their framing and use requirements need to be considered in the framing stage of the structure. Other composting designs both power-assisted and purely anaerobic, which fit where existing fixtures are set, can be finicky in their performance. Such basic issues as ambient temperatures and drafts pose obstacles to efficiency. And save some exotic, water supplied/pump ejected, ‘up’-flushing bowls, every other toilet installed, despite the type, requires a vent. And, the venting demands for most un-planned for, composting, non-powered models would preclude them from application because of unsuitability, based upon the existing framing in each and every structure. Providing for this vent, then, can be a nightmare. A “Game Stopper.” O. K. What would/could happen? Throughout the histories of the city, there have been “water bearers”, (Photo #2) who, with the use of a pole for shoulder and containers, brought water (and many other necessities) to your door, for a price. And there were also those* who made a living hauling away the nightly spoils of ‘chamber-pots.’ (Photo #3) (*Gongfermours or Gong farmers). Does history repeat itself? What are our odds? Well, no worries for this antique, but like the old song: “……Que Sera, Sera……”(whatever will be, will be). Will the mobile sewage disposal business be a good investment in the future? The author lived and worked for over 30 years (20 yrs. raising a family), right on or very near a major earthquake fault. (Once, two of his young, middle-school aged children, swimming at the community’s plus-Olympic sized pool, had some real excitement. A 6+ quake sent one of them from the second of four lanes onto the deck and the other found herself moved over four lanes, in the time of taking a breath.) The Author’s Pet Nightmare A majority amount of the water requirements for the 7 million inhabitants of the greater Bay Area metropolitan area depend upon two, large, old, high-maintenance tunnels crossing a major, active, earthquake fault in distant mountains. If these conduits suffered a rupture and failed, the problems of dealing with human waste would be almost as dire as fresh water for drinking. Forget bathing. Perfume sellers would have to go back centuries to find their trade in such a bull market. In the not so far off future maybe a smart billionaire or two will see ‘possibilities’ for fresh water super tankers. And, municipal “Sanitary Car Lines” might flourish, and have their own schedules just like buses. (Bathroom ‘trains’). In this old plumber’s opinion, it doesn’t appear too likely that the humans presently alive would/will be able to accomplish what’s required to eventually “turn this ship around” and avoid the wreck of wrecks: back to the Bronze Age infrastructure of human hygiene. The author fondly recalls another red flag, one of his early boyhood. On family camping trips his father would hang a red flag in camp to which one carried to and placed on the path at the improvised ‘comfort station’ to announce occupancy. Could my old camping memories or Medieval reality ever become a future city dwellers new paradigm? Que Sera, Sera…. ![]() There’s more than one instance in the PEX portion of the revised and expanded Plumbing A House, where the author makes known (to put it lightly) his concerns with the water rights situation in California, the most populous State in our Union. (Water rights vary by State and California is by no means facing a daunting water future, alone.) In this blog post I would like to take this opportunity to tell you about a new book that regardless of where you live, you might want to read if you have any interest in water issues, at all. Personally speaking, the author believes that all residents of the Seven Western States in the Colorado River Compact should know what’s contained in this book. On my suggested reading list in Plumbing A House, Cadillac Desert was at the top. This new read: Tim Stroshane’s Drought, Water Law and the Origins of California’s Central Valley Project is an excellent follow-up, illuminating many (formerly unmentioned) events that were precursors to the creation of the State Water Project, and which (now) raises awareness about the intractable problems still facing California’s water future. (One of the very succinct bits of information is Stroshane’s quote of Abraham Lincoln: “As a result of the war, corporations have been enthroned and an era of corruption in high places will follow, and the money power of the country will endeavor to prolong its reign by working upon the prejudices of the people until all wealth is aggregated in a few hands and the Republic is destroyed.” The issues raised in Stroshane’s book (in this author’s opinion) also directly affect the not so far off future of the plumbing industry and the continued role of the plumber in our society. Humankind requires clean water to stay alive and our current methods of sanitary plumbing are built upon unconstrained supplies. Great progress is being made by large population centers on water re-use, but the question remains whether nature will continue to serve up dependable precipitation for these and current systems to continue. If you were also to read “Clean And Decent” which is on the suggested reading list, you would see early examples of “dry” (‘earth’) toilets, which in some new form (composting?) could again (no matter how ‘unpalatable’) be in our future. Whether you fall into the riparian law camp or that of the appropriative law proponents (you might surprise yourself to discover which one you are.). Stroshane will help you understand California’s future water battles as they unfold. Second Push
Well, the author hopes that Part 1 (below) suffices, about the tape that isn’t, and now feels it’s time to recommend how to best apply the stuff. As much a difference as sufficiently polishing (cleaning) copper components means for no-leak sweating success, the same goes for the cleanliness of threads, both male/female, regardless of diameter and regardless of material. So we’ll do this wrapping routine with this also in mind. Let’s start this training exercise with a ½-in. or ¾-in. pipe nipple, 4-in. or longer. It could be a galvanized one, a brass one or a Schedule 80 PVC threaded nipple. Are you right or left handed? The author happens to be right handed. If you are LH, I hope you have become a sufficient RH/LH translator/transcriber by this stage of your adventure. Let’s also pretend you are me, and we’re sitting on an up-turned 5 gal bucket in an unfinished bathroom or maybe we’re kneeling down on a mature tile floor removing the lavatories corroded ½-in. galvanized, hot supply nipple. (The hot ALWAYS goes first.) In both situations a new nipple needs to be inserted into empty female threads, in front of us. (I don’t know about you but my favorite knee pads are those made for carpet install pros. They’re thick, genuine leather with thick felt liners, with double leather straps and metal buckles. Very comfortable and no sweating.) TIP: PtP carries around old toothbrushes and new, standard trade, hog-hair paste-flux-brushes for cleaning threaded female fittings. He also has pipe taps to quickly run in and out, which dislodges stubborn foreign matter and dresses imperfect threads. (See: The PEX Revised and Expanded Edition of Plumbing A House for some suggestions on the use of fittings for fuel gas systems.) Of course male threads are easier and quicker to clean in preparation for engaging pipe to fittings and vice versa. But equally important is always starting with clean female threads. So, Here We Go! For this tutorial I’ve chosen a new ½- or ¾-in. Schedule 80 std. right hand threaded PVC nipple. I’ve made this choice for the easy-on-the-eyes gray color, and if recently purchased from the supplier, the threads will be as clean as a whistle, and dry. We will work with a roll of quality ½-in. tape. The length of the tape on any spool will vary, by price. Hardware stores will tend to sell rolls with less on them for customers with only occasional needs but usually only serious hardware stores will carry 3.5 Mil, 99% pure tape, what we want for this exercise. Also, many tradesmen opt for 620-in. rolls, as does yours truly. The 1,000 plus-inch rolls (like Blue Monster) which have become popular these days, might pose a bigger challenge for the new-learner unless they had large hands and long fingers. Pete the Plumber recommends the 620-inch rolls which he (with gorilla mitts) finds more comfortable to manipulate, and would think so especially for new learners. O.K., Lay It On Me! As hinted in the first paragraph, from here our second push might qualify for some readers as sickeningly elemental. That’s alright. The author was always ‘queasy’ for a day (or longer) after lifting the lids on Greasy Spoon Restaurants’ grease traps. I ‘m going to be very anal in this second push because I would be happy if this post could really put the ribbon seal topic to rest. Fine. We’re comfortably either standing, sitting, or kneeling. In our left hand, palms down, fingers are wrapped around the nipple (of which about 1¼-in. pokes out past your thumb and forefinger, into space.) With the tape cover off find the end of the tape and pull out 2 inches. Place the spool on your right index finger. Have the tape hanging off the back side of the spool. This is very important because it affords you better control. Now, on the same hand, grip the bottom of the dangling tape between your thumb and middle finger. Next, bring close up, the nipple in your left hand, towards you, from behind the tape, and approximate the bottoms of tape (in your fingers) and bottom of the nipple. Now on the spool hosting hand, separate middle finger and thumb, and let the tape hang free, so it hangs in front of the nipples threads. We’ve draped the dangled tape in front of and over to the edge of the threads. You want the outside edge of the tape to be right at the edge of the nipples first thread, that is, the one at the front edge of the nipple. And, we want the tape not to hang below the bottom of the nipple. When you’ve got that, still holding the nipple firmly, lift your thumb on that left hand and move it over and press the center of the tape tightly, in place. Keep your thumb on it firmly; don’t let it slip. Now, with the middle finger on the spool-hosting hand, pressing on the far, back side rims of the spool, and the thumb pressing the front (acting as a brake), pull the tape (away from you) out over the top of the nipple, letting out about 5½ inches of tape, and stop. Next, pull on the tape with some ‘good’ force. Don’t worry if you break it. We’ve gotta whole roll to play with. We’re using quality 3.5 Mil, 99 percent pure PFTE. (Those attempting this with the cheap stuff will have a much less satisfying experience.) Maintaining this pulling tension, in a circular path, slowly lower your spool hand down until you can plainly see the top threads of the nipple, in high relief, under the tape. Good. Then maintaining that pulling tension, bring the spool forward, towards you, (below the nipple), and begin to encircle the nipple in this clockwise direction slowly, maintaining tautness. When you are bringing the tape upwards and about to reach your thumb, lift the front edge of your thump so you can go under it and keep going until you go around once more, and are about to reach it again. At this point you should be able to remove your thumb as you climb up the threads, overlapping by one-half tape width as you climb to the top thread. Almost done. Once at the top thread we will keep winding, this time back down, lapping as you go, until you cover our very first wrap, where we started. Maintain the tension. FINALLY, put your left thumb back on the tape FIRMLY. (The higher the quality of tape the more of a chore this becomes.) Now, we want the shortest distance between spool edge and nipple. We will finally separate the tape. This is done by tightly gripping the spool with thumb and both fingers, and pulling the spool away from the held-in-place nipple with a jerking motion. If you pull slowly you will merely stretch the tape too far before breaking it. You can also employ a jolt of near-equal force in opposite directions if it’s easier for you. After the tape breaks, keep your left thumb firmly pressed on the tape and set the spool aside. Finally, (yeah, finally) using your right hand thumb and index finger, do a forceful twisting (only in the same clockwise direction) of the tape-end into the thread’s valleys. With good force the tape end will adhere. With the tape lying flat and no unraveling, it’s time to pat yourself on the back. CONGRATULATIONS! Just In Case Another way of parting the tape that works for me is to hold the nipple still, left thumb firmly on tape, and wind up the spool, tightly, until the rims of the spool contact the nipple, and then keep winching on the spool until the tape parts. When attempting either parting technique, with the cheap stuff, when it parts, there can be an ‘explosion’ of micro-fine, wispy, strands of PTFE floating in the air with some still attached to both pieces, stretching like boardwalk salt-water taffy as you try to break it/them. There are other unsatisfactory aspects to the cheap stuff. If the side of the spool does not have the Mil-Spec # or the A-A- sequence, it’s the imposter. This stuff is rarely wound onto the spool in level wraps and it often, what PtP calls ‘gutter-balls’, slides into the gap between tape edge and inside wall of the spool. Once it has done this, it is no longer in tape form. Several inches of tape have become string. You cannot get a ‘string’ end to adhere to the already wrapped threads. And, it makes for awkward moves to join fitting and pipe and vice/versa, without having the tape unravel during the engagement. Another futile effort, like trying to put toothpaste back into the tube: putting the roll cover back on the spool of the cheapest of the cheap is an open ended finger exercise. Forget it. It was a one-time joint. Without the spool cover a good portion of this roll will many times unwind between needs, and, be wasted. Finally but not a finally: the cheap stuff, when held up to view, looks the color of skim milk compared to the cream of quality. What If I Wrap The Tape On Backwards? If you do not follow the spiral direction of the threads (clockwise when staring down the barrel) upon engagement, in most cases, the ribbon tape is scraped up into a leading wave of white, a bow-wave, forming at the edge of the fitting, making for a dry and leak compromised joint. I don’t know anyone who hasn’t done this even long after they thought they “had it down.” You’ll be excused. It won’t affect your grade. It’s gonna happen. But NOW you know how to make it right. What About Oily Threads? O.K., the former exercise was performed on a clean, PVC threaded nipple. What about galvanized or black steel pipe? The answer lies in whether you are buying the pipe pre-threaded in lengths of one through ten feet, and using store-bought nipples, or are you making your own threads with your own threading equipment? Store purchased sticks/sections and nipples are usually acceptably oil-free and other than inspecting the threads prior to engagement, the ribbon can usually be applied without a further cleaning of the male threads. When making your own lengths and nipples, however, usually there is enough residual oil in the threads that it is a good idea to wipe the excess off before applying the tape. How Many Makes For A Bum Wrap? You will see in ‘the literature’ recommendations that 3 wraps of tape is recommended. The author finds his described process is foolproof because he also applies a thin application of paste joint compound to the threads of female fittings. When working with DWV female ABS plastic threads (FIP adapters) and ABS p-trap union threads, the pipe joint compound has to also be PTFE. (See below.) For most applications, sans the paste, I am in agreement with the 3 wrap stipulation if you do not want to employ my above method. However, when you encounter broken and/or ‘slightly’ damaged threads, metal or plastic, it’s O.K. to apply more wraps. Again, as I mentioned upstream, one of the few times/places that I sometimes forgo the use of tape is on the fine threads of 1¼- and 1½-in. threaded brass tail pieces under sinks and tub waste & over-flows, if I have any difficulty engaging these threads. They are so fine and shallow that it is possible, too easily, to cross-thread the parts. Here, on metal parts, without the use of tape, I use either Hercules® Brush-On BLOCK™ paste thread sealant or Rectorseal® #8 thread sealant. If ABS plastic parts are involved, male or female or in any combination, the author employs Rectorseal T Plus 2™ paste (PTFE) sealant. DO NOT USE the Rectorseal® #8 WITH ABS, IT CAN DEFORM THE THREADS. On PVC pipe and fittings, because the material has great chemical resistance, the #8 is O.K. Leftovers O.K. I think we’ve covered most of the bases except for mentioning a few “special cases.” The first one I’ll mention will be: PVC pipe, nipples and fittings. This plastic, PVC, is so slippery to begin with that when adding PTFE ribbon tape to the mix, ole Gorilla Mitts used to occasionally split fittings by over-tightening them, by hand. Two-pairs of 10- or 12-in. slide-jaw pliers (See The Straight Poop, A Plumber’s Tattler, or…either of my Taunton soft-covers to view these pliers. They’re also shown in the newly Revised PEX Edition, Plumbing A House, e-version.) These two tools allow you, with the aid of PTFE ribbon and paste, and a handsaw for plastic or a chop-saw with a blade for plastic, to assemble threaded Schedules #40 and #80 PVC pipe & fittings, up to 1½- and 2.0-in. in diameter, with perhaps a little too much ease. Second loose end. When taping pipe and nipples for metallic fuel gas systems, make sure to start wrapping the tape on, one thread higher up than we did for our PVC practice nipple. If you create ribbon slivers (which you do not want on gas and compressed air systems, which we touched upon up-stream), it’s when you run your tape too close to, or overlap the first, beginning thread. A little swipe with the pipe joint compound’s ‘BRUSH IN CAP’ brush, across the female threads of the female fitting, will make up for the naked first thread, and even further your chance for fewer or no leaks. Third loose end. When taping the male threads of 1¼- and 1½-in. ABS and PVC trap adapters (sink wastes), run the tape well enough past (overlap) the first thread on the end of the male fitting to allow you to fold the tape over and roll it down the inside of the inlet barrel of the adapter for maybe an ⅛ to ¼ in. Regardless of whether you employ the beveled nylon slip-joint washer (Installing And Repairing Plumbing Fixtures) or the now common, combination (one piece)‘beveled-nylon washer and slip nut’, or, the simple, old-fashioned, square-cut, rubber slip nut washer in combination with the chromed brass tail piece, this ‘tape-tuck job’(wish it’d be as easy for my bulge) provides a solid bonus to attain the ‘No Leakers Club’ membership. Fourth And Last. (Not because I exhausted the list, but because I fear I’ve over-challenged your patience.) Some of you may want to become handy at residential plumbing maintenance or maybe you live with tub and shower valves (or wide-spread lavatory faucets) that employ standard, compression washers on screw stems, and you want/need to do ‘drip repair duty.’ This type of valve employs packing nuts. (See: The Straight Poop.) When adding string packings around the stems, under this nut, do the same as we did for the trap adapters: wrap the tape fully over the threads and then overlap so you can fold it under the bottom edge of the nut. This helps to evenly apply pressure to the packing for better stem-leak protection. See ‘The Poop’ for wrench use adjustments. Well you know what? If you’ve hung with me all the way down to here, you also deserve your own growler of Newcastle Pale. Adiós Amigos. Let’s meet up again. Pete the Plumber has an apology this time around for any plumbers visiting In The Pipe. This post deals with a topic which will surely bore you to tears, so maybe you wanna skip this one and check back in
another month. For the non-plumbers and the ‘basically curious’, the author believes this post will prove worth your reading time. The plumbers of today would have a harder time making ‘things’ work if PTFE (Teflon™) hadn’t been invented. But it was. And, plumbers love the stuff, whether in the form of ribbon, paste, string-packing, or flat, rigid shapes (faucet washers; large-hole, thin, friction washers (for valve spouts and shower heads); and, many internal valve components/cartridges utilize it. Since the application of ribbon-tape- to-male-threads is now so basic to the plumbing trade, and since so many laymen botch the job of applying it, the author felt he should attempt to ‘put that topic to bed’, for good. With this post he’s going to try and send you away with probably the most basic trick in the plumber’s bag. It will be ‘a-bit-of-a-hike’ for the person not wanting to know more than some basic facts about what no longer exists: Teflon™ tape. So, the first push of this article will merely be a background focus. But for those with the stamina, on the second push I’ll tell you how to be more successful using “Teflon™” Tape, That Isn’t. The Tape That Isn’t, And Why Plumber’s Love It So Much Isn’t? What’s this “isn’t”? Well, that’s a fun question to answer, if you’ll grant me the privilege. The author admits he’s an antique and/but his recall predates “Teflon™” tape. The now ubiquitous, ribbon-form, white (originally) pipe thread sealant, like many other great inventions, eventuated from a failed lab experiment. Prior to the early 1960’s, civilian plumbers had only oil-based pastes, and fibers (flax and hemp) to seal threaded piping systems. When you hear the word plumbing, what first comes to mind? Besides that. For many it’s pipes and water. Back in ’38, plumbers had fewer piping choices than they have today. For waste systems, inside buildings, then, it was ‘bell and spigot’ cast iron joined by oakum and molten lead. For water systems it was malleable iron and steel and brass. (Lead, for supply, in-building, by this time was nearly extinct.) The iron/steel and brass were/are joined by the utilization of male and female threads. Today in the residential sector there are additional fresh water piping choices: schedules M, L and K copper, CPVC, PEX, Hypertherm 2399, and who knows what’s next. These “modern” choices utilize flame; solvents and cements; insert fittings/compression rings; and, push fittings. A relative late comer is the Press System which utilizes copper, steel and PEX piping and proprietary fittings joined by extreme pressure via specialized, electric tools. These later choices are thread-less methods. So, basically, plumbers employ the ribbon tape that isn’t on Threads. (But not only for fuel gas and pressurized water, the stuff is indispensable for threads found in gravity DWV systems also.) Downstream the author gives the reader a little insight on threads, an invention of antiquity (3000 + yrs. ago?) one born with plumbing (irrigation) in mind. Now Why It Isn’t A very smart young man named Roy J. Plunkett (from simple Ohio beginnings), graduated in 1927 from high school and had gone off to Manchester College, Indiana, showing real promise in the study of chemistry, earning his B.A. Then it was off to Ohio State University for his M.A. and PhD. There he met another very smart young man, Paul Flory (who later won the Nobel for chemistry). They were roommates at OSU. I can just imagine the dinner prep/KP discussions those two had. Both reached pinnacles in the chemistry world of polymers (rubbers and ‘plastics’) (Tom Thumb moments). The epochal chemistry moment we’re concerned with, the discovery of PTFE occurred in 1938 when we find Plunkett in the employ of the newly minted DuPont Company. In short, what Roy J. Plunkett concocted was a pasty white powder, and possibly the world’s slipperiest material (polytetrafluoroethylene.) Like many great inventions it was discovered before there was a market for it. What Plunkett had accidentally done was to polymerize tetrafluoroethylene (gas) into polytetrafluoroethylene. Between 1938 (“April 6, 1938”) and 1945, when it was patented, there was a lot of cooking-pushing-poking-stretching. It’s official, copyrighted , commercial name, now held by Chemours Co., is Teflon™. PTFE was first put to work in munitions fuses and in a degree of liquid form, as a hi-tech R & D sealant. Its first and biggest customer was our ‘Dear Uncle’. He needed this miracle at work for his fledging aerospace (Defense in general) (no-pun), industry. As an almost paste form it was used to seal rocket sections. (How many remember the other “Ride Sally, Ride”?) That nightmare was a neoprene o-ring failure between rocket sections. It’s ironic that PTFE is as deeply entwined within the Plumbing Industry as Buna-N neoprene. Anyway, you’ll notice (this is a test) that the miracle material PTFE in tape form is not advertised as Teflon™ Tape. All you will see mentioned on the spool sides is PTFE. There is no “Teflon™” tape. That name now belongs to Chemours, (a related company) and they do not make Teflon™ tape. (And they want everyone to know this and desist from identifying PTFE, in any form, as Teflon™. (I think Du Pont once did sell the tape and called it Teflon™.) They’ll sell you their powders to manufacture it yourself if you go through the legal hoops. My memory on this subject of tape form goes back to the late fifties and early sixties. I “think” I remember seeing the words Teflon™ and DuPont, spelled out, on spools of the stuff but according to the literature that is not conclusive. That “imaginary?” spool, I think I remember, was designed not to be opened; it was shaped like a tape measure, with a flat bottom, and “tape” dispensed out of a slot. In this case there was a built-in sharp blade that cleanly cut the exceptionally thick tape in two, by squeezing the plastic spool. The author has worked in several labs, government and private, which would have used top quality but I can’t recall in which camp it was encountered. Tape Widths The tape is, as you well know, sold in several widths (and colors.) The most common for plumber/homeowner is the ½-in. width. I’ll use this width for threads (it has other uses, too) up to 1½-in. pipe size even though you see recommendations in the literature for wider tapes here. The number of wraps to make is determined by the length of threads and the tolerances of the parts to be joined. For 2-in. pipe and above it’s more convenient and quicker to use ¾- or 1.0-in. wide tape. The author has read recommendations by the manufacturers and other plumbers for distinct tape widths for distinct pipe diameters. The author can successfully fit 2-in. pipe with ½- in. wide tape. It’s the coverage depth (thickness) that is the concern here. It does take longer to wrap the ½-in. for the larger pipe sizes but this does not mean you must adhere to these printed width-to-diameter tables. The ultimate arbiter is NO LEAKS! Also, the medium that’s going to be flowing in the new system figures into how I apply the stuff, which I will tell you about downstream. I have no figures to substantiate my hunch, but I think the pipe trades, or for a better choice: the sealing of threads (many kinds, many industries/occupations), constitutes a major activity that TPFE manufacturers satisfy. (Though the author once applied (with many, tiny, bronze, flat-head screws), long, half-in. wide strips of PTFE, ¼-in. thick, on the bottom of a wooden two-man kayak, so as to paddle rocky riffles.) The boat was named by a friend, its builder (not PtP): Agape. (My friend was a highly religious fellow.) Never knew for sure though, whether it was the boat’s name or all of the PTFE bottom strips, but Agape had a long and exciting career. It was never wrecked. A flood took it away. (But the speed, smoothness and durability with which you rode on boulder and cobble was easily discernible from that of wooden bottoms. I had to be certain it was beached on level ground and tethered, or you could turn around to find it racing back into the water.) In the author’s first published pedagogy (The Straight Poop, A Plumber’s Tattler) he attempted, in text and through a series of rather amateurish, artistically illustrated hands, to show how to apply ribbon tape to a pipe nipple. I don’t know how much the drawings helped, but The Straight Poop, A Plumber’s Tattler is still viable, and available on the used market. Threads and Nipples They can be long, short, from tiny diameter to large. (In my early days in the trade, any pipe, any pipe material, longer than 12” was referred to as a “section” or “stick”.) Up to 12 inches was a nipple. What was common to all steel (no HVAC), and brass ones though were threads. Have you ever given much thought to threads? No, not your fine duds, but the modern day extrapolation of Archimedes’s screw, possibly our earliest example of functioning threads, which he incorporated into a water pump. This Archimedes, another real smart guy, was born in Syracuse, Sicily, in 287 BC. (He died in 212 BC.) The actual invention date of his world benefiting hand carved wooden screw (threads born?) is not known, for sure. Its origins go way back. One British researcher, Stephanie Dalley from the Oriental Institute, Oxford, deciphered cuneiforms of King Sennacherib (Assyrian) describing the casting of brass water screws 350 years before Archimedes’s wooden one. But modern day adaptations can be found in power drills, snowblowers, augers, harvesters, concrete pumps, and the list goes on. I’ve read Archimedes came to his screw water pump invention just as a major drought was gripping Europe and parts of Asia. A water pump, like Archimedes’s design, using a long screw and long outer tube or pipe, carved with close enough tolerances, lifted canal water much more efficiently than by man and bucket. (He developed his screw after visiting Egypt, where it might already have been in use.) Today when we apply PTFE, both tape and paste, to male (and especially in our case) male iron pipe threads (MIP), it’s done to both take advantage of PFTE’s slipperiness to counteract the friction of threads-in-mesh, allowing good thread purchase (engagement), but also its sealing quality, filling in the gap between non-precision (perfect) mating threads. The author will go into application details downstream for those curious. Paste PTFE is applied to female threads as well, but there are some tweaks here and I’ll cover those in another post, sometime. When a non-plumber holds a threaded nipple or a “stick” of manufactured steel/malleable pipe in their hands, they could be forgiven for believing that it is perfectly round. But it is not. It is though, expected to be within close approximation. The out-of-roundness varies by manufacturer. The industry standard of acceptance for near-roundness is one percent deviation per diameter of pipe. The author can sometimes pick up a stick and detect one that ‘got by’ Quality Control. The more degree out of round a threaded pipe or nipple is, the more resistance (per friction) is encountered when engaging (threading) on a threaded fitting, or vice-versa. Female threads in fittings that are an unacceptable degree of roundness are no less problematic. This can mean the necessity of employing bigger, heavier (more tiring) pipe wrenches for joinery than ‘should’ be necessary. And it means increased possibility of leaks. Other Smart Fellows Did you know that in 1841 a ‘Brit’ by the name of Joseph Whitworth (1771-1852, inventor of a metal lathe) did something that radically altered the pace of mechanical progress (most appreciated by plumbers)? Whitworth was an inventor with ‘noble’ machinist skills. At the time, “machinists” and other craftsmen were making threads that for some personal reason they favored above other possibilities. There was no standardization. The thread may have differed in as many ways as those creating them. Whitworth forever changed this. It was his and the world’s good fortune that the thread he produced on his-invented lathe was eventually adopted by the railroads of the time, and became known as the British Standard Whitworth. He was not modest about his accomplishment either. In his memoirs he had the following to say about his lathe: ….”worth all the other tools in use in any workshop in the world, for finishing, machining brass and iron.” With his invention, at an opportune time, the screw cutting lathe allowed a standard to be defined and maintained. (The patent on Whitworth’s lathe expired in 1812.) Another smart guy, William Sellers, an American, years behind Whitworth, in 1864, presented a paper to the Franklin Institute in Philadelphia proposing a new thread standard for the United States. He changed Whitworth’s thread angle from 55 to 60 degrees and altered the tip and valley shapes. This thread design eventually became the United States Standard thread. In time it underwent further refinements to father: NC (National Course), NF (National Fine), and in our interest: NPT (National Pipe Taper). Of the threads on which plumbers mostly apply PTFE ribbon tape, male iron pipe threads (MIP), (which are National Pipe Taper) are undoubtedly coarser and of less precision than thread found in say the automotive and mechanical fields. These ‘plumber’s’ tapered threads (male and female) form a high friction wedge seal, upon meshing (completing engagement). It’s (or was) common to refer to this completed connection as being married. Not all threaded pipe encountered in the market, with so many suppliers, has threads of equal high quality. When making your own, on equipment not properly maintained, sub-standard quality threads happen a lot, which are more prone to leaks. With quality threads (both male pipe and female fitting), some brands can be pre-assembled with mere gloved hands. Some you can barely get two threads in-mesh without use of ever longer and heavier wrenches. This could be the fault of the male OR the female threads, or BOTH. (On your unlucky days it can be both.) No amount of liquid/paste pipe joint compound, even PTFE versions, applied to male or female threads, or both, affords the same ease of assembly as PTFE ribbon on male, solo, IF the tape is of high quality. Thank you, thank you, thank you Roy J. Plunkett. Tape Quality And Color What makes for high quality in PTFE ribbon tape? A number of things but the two foremost are content ratios of PTFE (purity) and thickness. This differs markedly between tape manufacturers. Early in the ‘PTFE-into-tape’ process it was realized that a thickness standard needed to be established. Uncle Sam, the first and biggest customer, had his requisites: 3.5 mils thick and 99% purity (of PTFE): MIL-T-27730 A. Much of the ‘industry’ (honest ones) adheres to that or a newer specification: A-A-58092 which also requires the 3.5 mil thickness and purity levels but adds a density requirement of 1.2g/cm3. The author can still remember the day when a Will-Call clerk (John Paul) shoved a roll of yellow ribbon tape at me from across his counter: “For Nat. gas….new Oakland reg.” (Some community inspectors want to also see yellow tape for LPG fuel gas.) Up until then it had just been one color: white. Turns out a gent (Bill Bentley) I believe in England, had come up with a color code for tape used in different applications. Me suspects what happened…I’ll wager: Some skin-flint plumber trying to conserve on an at-the-time quite pricy supply item (PTFE Ribbon Tape) used insufficient amounts on a gas job and dodged inspection, and at some point the system failed and there was fire and or injury or both. (Greed knows no race or borders.) (Sorta like a standard where cities wait for ten wrecks at an intersection before spending the bucks for stop signs.) The author had been using the proper amount of quality (USA) white tape for inspected water, gas, and threaded DWV, for years, without any problems. The tape became colored to keep plumbers honest and purchasing 3.5 Mil, high-purity, high-density and allowed inspectors to know the plumbers were behaving. (The purple color of PVC primer and the pink of ABS-to-PVC transition cement are other examples where color was added to assure regulations compliance.) A pink color, connoting 3.5 Mil/99% pure, for general use, was the first color experiment the author recalls. This color for ribbon tape could only be given to quality manufacturers making stuff such as A-A-558902. If the offshore outfits had tried pinking their junk stuff I’m sure there would have been grounds for serious trade ramifications. (We have entered a Public Safety realm, here.) Did this guarantee that there’d be no leaks? Answer: No. (That’s a case for workmanship.) But, it improved the odds for fewer failures. Mill-Rose (good stuff) makes a blue tape (Blue Monster) which is in good part a marketing strategy, but not an official requirement for any particular type of piping (until some senior building inspector adds it to his community’s Local Code). But it is even thicker than 3.5 Mil. (4.0). Look on the outside of any quality spool for the thickness figure and Mil spec numbers or hopefully A-A-58092. The cheap stuff has only PTFE noted, with no thickness or content figures; and, there’s next only the country of origin noted. Two other color standards were popularized: green for oxygen (can’t have any oils involved) and gray for stainless steel piping systems. The gray has microscopic particles of nickel mixed in which functions as an anti-galling (anti-seize) component. Unless you’re plumbing lab/hospital-medical/R&D you need not concern yourself with gray or green. These colors are for the U.S.; other countries have their own color schedules. For instance, in England green is for water. In the literature I have seen red flags for using ribbon tape on compressed air. On high pressure lines, if too much tape is used the joint can fail (with much dramatic effect) by separating, dangerously. Also, when creating systems, any type, threads can cut tiny slivers of tape and send them down stream. For water it’s not a big deal because good plumbers remove valve cartridges, shower heads, faucet aerators, toilet fill-valve seals and regulator screens prior to charging their systems and the slivers (and other “line trash”) are flushed out. In the case for fuel gas (and compressed air) slivers can easily be ‘blown’ into difficult-to-access, fine-mesh screens in regulation equipment. (I have advice for you on this topic, downstream, in the second push.) Tit For Tat Another benefit to the coloring idea was a leveling of the economic playing field. After the market for the original, standard, quality 3.5 Mil white tape had grown to a size to attract fierce competition, certain countries (I won’t mention names) began selling “at first appearance” look-a-like tape with much less thickness, purity, and density, and of course at a much cheaper price as well as quality. Some of these off-shore outfits resorted to pricking the thinner cheap stuff with pricking equipment as it was extruded to “fluff” it up, in order to claim a thicker thickness than it really was. By coloring the quality stuff it differentiated it from the bogus. I am sure there are smaller, independent makers of quality tape, in a number of countries, but because piping systems are so labor intensive and time consuming to break down and re-fit, here’s a good place not to cut corners. PtP has used pink Mill-Rose brand (U.S.) for decades and found it ‘top drawer’, on water, gas, and DWV. I’ve also used their of-late, thicker Blue Monster line too, but still prefer the 3.5 Mil tape for some uses. HOT TIP: The author does use the thin cheap offshore ½-in wide ribbon tape for ONE application: the fine male threads on 1¼-in. lavatory threaded tail pieces and the same fine male threads on 1½-in. threaded tailpieces, applicable to kitchen sink waste components and bath waste & overflow tailpieces. These threads are so shallow that the thicker quality tapes are too thick. Because of the extreme slipperiness of PTFE you can easily cross-thread these components. If the author has more than just a couple of failed attempts to achieve ‘threads in mesh’ (engagements) with these components, even without suffering thread damage, I remove the tape and use only pipe joint compound in its stead, with customary success. In a future post I’ll get around to telling you my preferences for pipe joint compounds, and why. (See: Installing And Repairing Plumbing Fixtures.) Well, that’s the end of the ‘beginner’s hike’, the first push. All who want, “It’s to the showers”! But any thru-traveling die-hard masochists are going to love what follows. Part 2 - Coming soon...stay tuned. |
Author
Peter Hemp is a San Francisco East Bay residential plumber and plumbing author and former R & D steam vehicle plumber. His hobbies are ocean kayaking and touring the Left Coast by bicycle. Archives
March 2025
Categories |
|
All Rights Reserved